A HIGHLY STEREOSELECTIVE ROUTE TO 2-ALKENYLTRIMETHYLSILANES

Nobujiro SHIMIZU,* Fumihiro SHIBATA, and Yuho TSUNO
Department of Chemistry, Faculty of Science, Kyushu University,
Fukuoka 812

1,2-Epoxy-1,3-bis(trimethylsily1)propane reacts with various Grignard reagents (RMgX) to give 1-R-2,3-bis(trimethylsily1)-1-propanols which upon olefination with NaH or with BF_3Et_2O give the corresponding (\underline{Z}) or (\underline{E})-2-alkenyltrimethylsilanes in moderate to good yields, respectively.

Allylsilanes are versatile synthetic reagents and can be prepared by several methods including silylation of allyl-metal species, Wittig olefination, and catalytic hydrosilylation or reductive silylation of 1,3-dienes. These methods, however, often show poor stereoselectivity yielding a mixture of (\underline{E}) and (\underline{Z}) stereoisomers which are not easily separable from each other. We report here another route which is useful for stereoselective synthesis of 2-alkenyltrimethylsilanes using 1,2-epoxy-1,3-bis(trimethylsilyl)propane (1).

The requisite substrate (<u>E</u>)-<u>1</u> [bp 75-76 °C/1600 Pa; IR 1255, 870, and 840 cm⁻¹; NMR (CCl₄) δ 0.03 (s, 9H), 0.05 (s, 9H), 0.58 (dd, <u>J</u>=14 and 7.5 Hz, 1H), 1.15 (dd, <u>J</u>=14 and 5.5 Hz, 1H), 1.71 (d, <u>J</u>=3.2 Hz, 1H) and 2.62 (m, 1H)] was prepared in 68% yield by oxidation of (<u>E</u>)-1,3-bis(trimethylsilyl)propene²) with m-chloroperbenzoic acid (0 °C in CH₂Cl₂). Alkylation of <u>1</u> with (n-Bu)₂CuLi occurred slowly in ether (-40 °C, 24 h) affording an expected alcohol **4** in 75%

yield, whereas $\underline{\mathbf{1}}$ reacted rapidly with various Grignard reagents in ether at room temperature to give Si-rearranged alcohols $\underline{\mathbf{2}}$ in good yields, except for the alkylation with a bulky reagent t-BuMgBr where the major product was in fact an enol silyl ether $\underline{\mathbf{6}}$. The results are listed in Table 1. A magnesium salts-induced rearrangement of $\underline{\mathbf{1}}$ to an aldehyde $\underline{\mathbf{5}}$ probably explains the formation of $\underline{\mathbf{2}}$ and $\underline{\mathbf{6}}$.

Table 1.	Reaction	of 1	with	organometallic	reagents	and		
subsequent olefination ^a)								

	<u>2</u> b,c)	<u>3</u> , Yield	3, Yield/% ^{c,d)}	
Reagent	Yield/%	Method A ^e	Method B ^{f)}	
MeMg I	89	58 ^{g)} (89% <u>Z</u>)	92 ^{g)} (92% <u>E</u>)	
i-PrMgBr	87	45 ^{g)} (>99% <u>Z</u>)	93 ^{g)} (> 99% <u>E</u>)	
n-BuMgBr	85	73^{g} (98% \overline{Z})	90 (94% <u>E</u>)	
t-BuMgBr	20 ^{g)}	50 ^{g)} (>99% <u>Z</u>)	75 ^{g)} (> 99% <u>E</u>)	
c-C ₆ H ₁₁ MgC1	86	55 (> 99% <u>Z</u>)	96 (> 99% <u>E</u>)	
PhMgBr	92	90^{h} (94% $\frac{Z}{Z}$)	88 (>99% <u>E</u>)	
(n-Bu) ₂ CuLi	75 (as <u>4</u>) ¹⁾	80 (>99% <u>E</u>)	88 (52% <u>Z</u>)	

a) The products were characterized by microanalytical and/or spectral data. The stereochemical assignment for 3 was chiefly based on the finding that the E-isomer showed a C=C stretching frequency by 5-15 cm higher than that of the Z-isomer. b) 1 was added to an ethereal solution of a Grignard reagent (2 equiv.) at room temperature (30 min). c) Isolated yield unless otherwise noted. d) Isomeric purity was determined by GLC and NMR. e) Refluxed for 3-5 h in 1,2-dimethoxyethane with NaH (1-2 equiv.). f) Mixed with boron trifluoride etherate (2 equiv.) in ether at room temperature for 30 min. g) Determined by GLC. h) Refluxed for 20 min; prolonged heating gave 1-phenyl-1-propene. i) At -40 °C for 24 h.

The alcohol $\underline{4}$ gave (\underline{E}) -2-heptenyltrimethylsilane $(\mathbf{3}; R=n-Bu)$ stereospecifically upon olefination with NaH (Method A), but with BF $_3$ Et $_2$ O (Method B) an isomeric mixture of the product without significant selectivity $(\underline{E}/\underline{Z}=48/52)$. On the other hand, the olefination reaction of $\underline{2}$ by either method A or B was highly stereoselective and gave (\underline{Z}) or (\underline{E}) -2-alkenyltrimethylsilanes $\underline{3}$ in moderate to good yields, respectively, as shown in Table 1. Relatively low stereospecificity in the olefination of an alcohol $\underline{2}$ with R=Me may arise from the contamination of a wrong diastereoisomer of the alcohol.

Further study on stereoselective synthesis of disubstituted allylsilanes from ${\bf 2}$ is in progress.

References

- 1) E. W. Colvin, "Silicon in Organic Synthesis," Butterworths, London (1981); W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, Berlin, Heidelberg (1983).
- 2) (E)-1,3-Bis(trimethylsily1)propene can be prepared from allyltrimethylsilane [for example, see J. Dunogues, R. Calas, N. Ardoin, and C. Biran, J. Organomet. Chem., 32, C31 (1971); R. Corriu and J. Massee, ibid., 57, C5 (1973); H. O. House, P. C. Gaa, J. H. C. Lee, and D. VanDerveer, J. Org. Chem., 48, 1670 (1983)], but we obtained it more economically from 1,3-dichloropropene (E/Z=55/45) by in situ coupling reaction with Me₃SiC1 (2.5 equiv.) in the presence of excess magnesium in THF in 61% yield.
- 3) The stereochemistry of the alcohols $\underline{2}$ and $\underline{4}$ was deduced from the fact that NaH-promoted β -elimination occurs in a syn fashion (see Ref. 1).
- 4) P. F. Hudrlik, R. N. Misra, G. P. Withers, A. M. Hudrlik, R. J. Rona, and J. P. Arcoleo, Tetrahedron Lett., 1976, 1453.

(Received August 14, 1985)